Aggregation of polyphagous predators in response to multiple prey: ladybirds (Coleoptera: Coccinellidae) foraging in alfalfa

Publication Type:Journal Article
:2007
Authors:E. W. Evans, Toler T. R.
Journal:Population Ecology
Volume:49
Pagination:29-36
Date Published:January
:1438-3896
:Hypera postica
:

The spatial distribution of polyphagous predators may often reflect the integration of aggregative responses to local densities of multiple species of prey, and as such may have consequences for the indirect linkages among the prey sharing these predators. In a factorial field experiment in which we manipulated local prey densities within a field of alfalfa in Utah (USA), we tested whether aphidophagous ladybirds would aggregate not only in response to their primary aphid prey, but also in response to an abundant alternative prey, the alfalfa weevil (Hypera postica (Gyllenhal)). Native North American ladybirds (primarily Hippodamia convergens Guerin and H. quinquesignata quinquesignata (Kirby)) responded only to spatial variation in aphid density. In contrast, the introduced ladybird, Coccinella septempunctata L., aggregated also at local concentrations of the weevil late in the experiment when weevil density was high and aphid density was relatively low throughout all experimental plots. The results support the hypothesis that C. septempunctata is more responsive than are native ladybirds to the availability of alternative prey in alfalfa, which may account in part for the displacement of native ladybirds from alfalfa by the introduced species as aphid numbers have declined. The differing responses of the native and introduced ladybirds to spatial patterns of the alternative prey underscore the importance of extending the study of predator aggregation to understand better how polyphagous predators distribute themselves in response to spatial patterns of multiple species of potential prey.

Scratchpads developed and conceived by (alphabetical): Ed Baker, Katherine Bouton Alice Heaton Dimitris Koureas, Laurence Livermore, Dave Roberts, Simon Rycroft, Ben Scott, Vince Smith